Asisten Kanker Payudara

Portal Penelitian CNN Breast Cancer

No Type BC Dataset Model Overview of CNN Blocks Result Author Keterangan
31 Breast Pathology VinDr-Mammo in Vietnam, MiniDDSM, Chinese Mammography Database (CMMD) Convolutional Neural Networks (CNN), yaitu EfficientNet dan ConvNeXt. Ensemble model YOLOX untuk ekstraksi ROI dan EfficientNet/ConvNeXt Not reported Prec=0.860, F1-score=0.810 Region-of-Interest Optimization for Deep-Learning-Based Breast Cancer Detection in Mammograms
32 Mass Lesions BC Total of 875 patient studies with complete DBT (digital breast tomosynthesis) and ultrasound images Metode machine learning dan upstream data fusion (UDF) Not reported In 55 test cases, 40% (22/55) showed ML detection across all three modalities (DBT CC, DBT MLO, and US), of which 90.9% (20/22) yielded correct fused detections and accurate lesion classification using UDF. FROC analysis demonstrated 90% sensitivity at only 0.3 false positives per case, whereas ML alone produced an average of 8.0 false alarms per case. Breast cancer detection with upstream data fusion, machine learning, and automated registration initial results
33 Malign Breast Cancer Data klinis di Rumah Sakit Universitas Tampere, Finlandia pada 392 mammogram AI, sistem mammografi MicroDose SI dari Philips Healthcare dan Senographe Essential dari General Electric Medical Systems (GE) Not reported END2END: AUC=0.950, GLAM: AUC=0.888 ,GMIC: AUC=0.93 , DMV CNN: AUC=0.886 Saliency of breast lesions in breast cancer detection using artificial intelligence
34 Tubule segmentation 51 Whole Slide Images (WSIs), 8.225 patch citra encoder: EfficientNetB3, ResNet34, dan DenseNet161 -decoder: EfficientNetB3-U-Net, ResNet34-U-Net, dan DenseNet161-U-Net Reported Rec=0.937, Spec=0.900, Dice=0.953, Tubule-U-Net a novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer
35 Breast Pathology DDSM (Digital Database for Screening Mammography), Inbreast, MIAS, WBC FDCT-WRP (Fast Discrete Curvelet Transform with Wrapping) untuk ekstraksi fitur, diikuti oleh PCA dan LDA untuk reduksi fitur, lalu menggunakan Modified Particle Swarm Optimization (MODPSO) yang dikombinasikan dengan Extreme Learning Machine (ELM) sebagai Not reported DDSM, MIAS, dan INbreast dengan akurasi mencapai sekitar 98.94% (DDSM), 100% (MIAS), serta sensitivitas, presisi, spesifisitas, dan AUC yang tinggi (mendekati 1.0 pada MIAS). Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms
36 Breast Pathology 596 Breast Cancer Dataset from Kaggle Machine Learning klasik dan ensemble soft voting Reported Acc=0.990, Prec=0.980, Rec=1, F1-score=0.990, AUC=1 An Efficient Breast Cancer Detection Using Machine Learning Classification Models
37 HER2 (Human Epidermal Growth Factor Receptor 2) Clinical data, 847 images Convolutional Neural Network (CNN) dengan arsitektur Resnet34 Reported IoU=0.989 Single Vesicle Surface Protein Profiling and Machine Learning-Based Dual Image Analysis for Breast Cancer Detection
38 Malign Breast Cancer MSI (Mammography Image Analysis Society), DDSM (Digital Database for Screening Mammography), INbreast, dan BreakHis (Breast Cancer Histopathological Database) Hybrid CNN and Pruned Ensembled Extreme Learning Machine Reported Acc=0.872, AUC=0.96, Breast Cancer Detection and Analytics Using Hybrid CNN and Extreme Learning Machine
39 Malign Breast Cancer Dual-polarized UWB bra-tenna on ERI breast phantom dataset Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Methods (GBM), Categorical Boost (CatBoost), Adaptive Boosting (AdaBoost), Decision Trees (DT), XGBoost Not reported SVM Acc=0.94, Prec=0.93, Rec=0.96, F1-score=0.94, AUC=0.96 Machine Learning for Breast Cancer Detection with Dual-Port Textile UWB MIMO Bra-Tenna System
40 Pectoral muscle segmentation MIAS, INBREAST, dan DDSM AI incorporating convolutional neural networks (CNNs) Reported Acc=0.989, Dice=0.982, Jacc=0.966 An Artificial Intelligence-Based Tool for Enhancing Pectoral Muscle Segmentation in Mammograms Addressing Class Imbalance and Validation Challenges in Automated Breast Cancer Diagnosis

📈 Tren Penelitian Berdasarkan Jenis (Type BC)